精品无码国产污污污免费网站,无码爽视频,福利姬液液酱喷水,激情综合色五月丁香六月欧美

當(dāng)前位置: 首頁 - 新聞資訊 > 行業(yè)新聞

介紹一下幾種常用的減小局部阻力的措施

來源:http://www.ff14-l.com 日期:2025-05-03 發(fā)布人:創(chuàng)始人

在通風(fēng)與空調(diào)系統(tǒng)設(shè)計中,局部阻力是系統(tǒng)總阻力的重要組成部分,通??烧嫉较到y(tǒng)總阻力的30%-50%,對系統(tǒng)能耗和氣流組織具有決定性影響。局部阻力的本質(zhì)在于氣流流經(jīng)管件時產(chǎn)生的流動分離和渦流現(xiàn)象,這些二次流動會導(dǎo)致顯著的機械能損失。為有效降低局部阻力損失,工程實踐中主要采取以下系統(tǒng)化的優(yōu)化措施:

In the design of ventilation and air conditioning systems, local resistance is an important component of the total system resistance, usually accounting for 30% -50% of the total system resistance, and has a decisive impact on system energy consumption and airflow organization. The essence of local resistance lies in the flow separation and vortex phenomenon generated when the airflow passes through the pipe, which can cause significant mechanical energy loss due to these secondary flows. To effectively reduce local resistance losses, the following systematic optimization measures are mainly adopted in engineering practice:

管道截面漸變優(yōu)化技術(shù)

Gradient optimization technology for pipeline cross-section

當(dāng)氣流通過截面突變的管件(如突擴管、突縮管)或異形管件時,劇烈的邊界層分離會產(chǎn)生大尺度渦流區(qū)。實驗數(shù)據(jù)表明,突擴管的局部阻力系數(shù)ζ可達(dá)0.5-1.0(基于小截面流速),而突縮管ζ值在0.3-0.5之間。采用漸擴/漸縮管替代時,最佳擴散角應(yīng)控制在8°-10°范圍內(nèi),此時ζ值可降低60%-80%。當(dāng)擴散角超過45°時,氣流分離現(xiàn)象加劇,ζ值會急劇增大。對于空間受限的場合,可采用多級漸變或流線型過渡結(jié)構(gòu),確保邊界層保持附著流動狀態(tài)。

When the airflow passes through pipes with sudden cross-sectional changes (such as expansion pipes, contraction pipes) or irregular pipes, severe boundary layer separation will generate large-scale vortex zones. Experimental data shows that the local resistance coefficient Zeta of a sudden expansion tube can reach 0.5-1.0 (based on small cross-sectional flow velocity), while the Zeta value of a sudden contraction tube is between 0.3-0.5. When using a gradually expanding/contracting tube as a substitute, the optimal diffusion angle should be controlled within the range of 8 ° -10 °, at which point the zeta value can be reduced by 60% -80%. When the diffusion angle exceeds 45 °, the phenomenon of airflow separation intensifies and the Zeta value increases sharply. For situations with limited space, multi-level gradient or streamlined transition structures can be used to ensure that the boundary layer maintains an attached flow state.

三通管件流體動力學(xué)優(yōu)化

Optimization of fluid dynamics for three-way pipe fittings

三通管件的局部阻力主要源于兩股氣流的動量交換和渦流耗散。理論分析和實驗研究表明,在合流三通中,當(dāng)主管流速V1與支管流速V2之比超過1.5時,會產(chǎn)生明顯的引射效應(yīng),導(dǎo)致能量損失增加20%-30%。最優(yōu)設(shè)計應(yīng)保持V1/V2在0.8-1.2范圍內(nèi),此時總阻力系數(shù)最小。分流三通則需注意分流比與面積比的匹配,建議采用45°斜接支管而非直角連接,可使ζ值降低40%。計算時需注意:當(dāng)出現(xiàn)引射效應(yīng)時,被引射支路的ζ值可能為負(fù),但這不代表能量增益,而是能量重新分配的結(jié)果。

The local resistance of three-way fittings mainly comes from the momentum exchange and vortex dissipation of the two airflow streams. Theoretical analysis and experimental research have shown that in a converging tee, when the ratio of the main flow velocity V1 to the branch flow velocity V2 exceeds 1.5, a significant injection effect will occur, resulting in an increase of 20% -30% in energy loss. The optimal design should maintain V1/V2 within the range of 0.8-1.2, at which point the total drag coefficient is minimized. The three principles of diversion require attention to the matching of diversion ratio and area ratio. It is recommended to use a 45 ° diagonal branch pipe instead of a right angle connection, which can reduce the Zeta value by 40%. When calculating, it should be noted that when an injection effect occurs, the zeta value of the injected branch may be negative, but this does not represent energy gain, but rather the result of energy redistribution.

20220330032953476.jpg

彎管流動控制技術(shù)

Bend flow control technology

彎管局部阻力與曲率半徑R呈負(fù)相關(guān)關(guān)系。對于圓形風(fēng)管,當(dāng)R/D從0.5增至2.0時,ζ值可從1.2降至0.15;矩形風(fēng)管的長寬比越大,二次流效應(yīng)越顯著,建議R/de取6-12(de為當(dāng)量直徑)。對于大尺寸彎管(D>800mm),內(nèi)部加裝導(dǎo)流葉片可有效抑制二次流:等間距布置5-7片翼型導(dǎo)流片,可使ζ值降低50%-70%。新型三維扭曲彎管通過流線型設(shè)計,能完全避免流動分離,ζ值可低至0.05-0.1。

The local resistance of bent pipes is negatively correlated with the curvature radius R. For circular ducts, when R/D increases from 0.5 to 2.0, the Zeta value can decrease from 1.2 to 0.15; The larger the aspect ratio of rectangular ducts, the more significant the secondary flow effect. It is recommended to take R/de as 6-12 (where de is the equivalent diameter). For large-sized bent pipes (D>800mm), installing guide vanes inside can effectively suppress secondary flow: arranging 5-7 wing shaped guide vanes at equal intervals can reduce the Zeta value by 50% -70%. The new type of three-dimensional twisted bend pipe can completely avoid flow separation through streamlined design, and the zeta value can be as low as 0.05-0.1.

進(jìn)出口氣流組織優(yōu)化

Optimization of Import and Export Airflow Organization

入口損失主要源于氣流收縮和流動分離。采用喇叭形入口(圓弧半徑r≥0.2D)比直角入口ζ值降低80%。出口動壓損失具有特殊性:自由出流的ζ≡1.0,這部分能量完全耗散;當(dāng)加裝風(fēng)帽等部件時,附加阻力系數(shù)ζadd需單獨計算。通過設(shè)計小角度漸擴出口(擴角6°-8°),可將總ζ值降至0.7-0.9。對于高效系統(tǒng),建議采用動能回收裝置,將出口動壓轉(zhuǎn)換為靜壓回升,理論回收效率可達(dá)60%-70%。

The inlet loss is mainly caused by airflow contraction and flow separation. Using a horn shaped entrance (with a radius of arc r ≥ 0.2D) reduces the zeta value by 80% compared to a right angle entrance. The dynamic pressure loss at the outlet has a special characteristic: the energy of the free outflow with a value of Zeta ≡ 1.0 is completely dissipated; When installing components such as wind caps, the additional resistance coefficient Zeta add needs to be calculated separately. By designing a small angle gradually expanding outlet (expansion angle of 6 ° -8 °), the total Zeta value can be reduced to 0.7-0.9. For efficient systems, it is recommended to use a kinetic energy recovery device to convert the outlet dynamic pressure into static pressure recovery, with a theoretical recovery efficiency of up to 60% -70%.

系統(tǒng)集成優(yōu)化策略

System integration optimization strategy

在實際工程設(shè)計中,還需考慮以下綜合措施:

In practical engineering design, the following comprehensive measures need to be considered:

(1) 保持管道系統(tǒng)水力平衡,避免局部高速區(qū);

(1) Maintain hydraulic balance in the pipeline system and avoid local high-speed zones;

(2) 采用CFD模擬優(yōu)化復(fù)雜管件的氣流組織;

(2) Using CFD simulation to optimize the airflow organization of complex pipe fittings;

(3) 關(guān)鍵部位設(shè)置整流格柵或均流器;

(3) Install rectifier grids or current balancers in key areas;

(4) 定期維護(hù)確保內(nèi)表面光潔度;

(4) Regular maintenance to ensure the smoothness of the inner surface;

(5) 考慮安裝空間限制與經(jīng)濟(jì)性平衡。

(5) Consider balancing installation space limitations with cost-effectiveness.

通過以上系統(tǒng)化的優(yōu)化措施,可使通風(fēng)空調(diào)系統(tǒng)的局部阻力降低30%-50%,相應(yīng)減少風(fēng)機能耗15%-25%。對于大型商業(yè)建筑,這種優(yōu)化帶來的年節(jié)能效益可達(dá)數(shù)萬至數(shù)十萬元,投資回收期通常不超過2年。隨著計算流體力學(xué)和新型管件技術(shù)的發(fā)展,局部阻力控制正朝著精細(xì)化、智能化的方向發(fā)展,為綠色建筑節(jié)能提供新的技術(shù)支撐。

Through the above systematic optimization measures, the local resistance of the ventilation and air conditioning system can be reduced by 30% -50%, and the energy consumption of the fan can be correspondingly reduced by 15% -25%. For large commercial buildings, the annual energy-saving benefits brought by this optimization can reach tens of thousands to hundreds of thousands of yuan, and the investment payback period usually does not exceed 2 years. With the development of computational fluid dynamics and new pipe fitting technologies, local resistance control is moving towards refinement and intelligence, providing new technological support for energy conservation in green buildings.

本文由山東通風(fēng)管道友情奉獻(xiàn).更多有關(guān)的知識請點擊:http://www.ff14-l.com真誠的態(tài)度.為您提供為全面的服務(wù).更多有關(guān)的知識我們將會陸續(xù)向大家奉獻(xiàn).敬請期待.

This article is a friendly contribution from Shandong Ventilation Duct For more information, please click: http://www.ff14-l.com Sincere attitude To provide you with comprehensive services We will gradually contribute more relevant knowledge to everyone Coming soon.

上一篇:來了解酒店排煙系統(tǒng)清洗的方法
下一篇:濟(jì)南通風(fēng)管道凈化處理通風(fēng)管道的制做與安裝

推薦產(chǎn)品

  • 廚房排煙
  • 廚房排煙
  • 軸流風(fēng)機
  • 不銹鋼制品

本站圖片均由網(wǎng)站所有方提供,部分圖片來源于網(wǎng)絡(luò),如有任何疑問請及時與我們聯(lián)系,未經(jīng)溝通本站不承擔(dān)相關(guān)法律責(zé)任!